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The computation of the flow and aerodynamic heating of different spatial local rough- 
nesses on a body surface is an urgent scientific engineering problem (see, e.g., [i]). 
Analysis of the flows around roughnesses on a flat surface [2] disclosed an interaction 
mechanism between the spatial perturbed domains and the external inviscid flow, permitted 
the formulation of a whole series of original boundary value problems, investigation of the 
fundamental properties of their solutions and the construction of a classification scheme 
for such flow regimes. 

Taking account of the body surface curvature is important in practice. This will 
afford the possibility of modelling the flow around roughnesses on a wing surface, on the 
wall of a curved channel, or on a turbine blade. Study of the laminary boundary layer flow 
interaction around a curved surface with a small roughness thereon disclosed the origin of 
a special modification of the longitudinal--transverse interaction theory in this case [3, 
4]. A detailed bibliography on the asymptotic theory of interaction between spatial per- 
turbed flow domains and an external inviscid flow is presented in [2, 3]. 

Systematic investigations of the viscous incompressible fluid flow around small spatial 
roughnesses on a curved surface are performed in this paper. It is obtained that the influ- 
ence of surface curvature is felt only on roughnesses extended in the stream direction. A 
classification scheme for the flow regimes around such roughnesses is constructed, the dif- 
ferences in the interaction mechanisms between perturbed flow domains and an external invis- 
cid stream are shown, and an explanation is proposed for the origination of perturbation 
transmission upstream during the flow around roughnesses on convex surfaces. 

i. The flow around a curved plate (with a constant radius of curvature R) by a viscous 
fluid flow is considered for large but subcritical Reynolds numbers. It is assumed that a 
small spatial convexity or dent (Fig. i) is found on a plate surface at a distance L~.H 
from the leading edge. A stationary solution is constructed for the Navier--Stokes equations 
for the spatial perturbed laminar flow domain as Re = uoL/~ = e -2 tends to infinity (uo is 
the longitudinal velocity component in the external inviscid flow at the point where the 
small roughness is, and v is the kinematic viscosity coefficient). Henceforth only dimen- 
sionless variables are used, where all the linear dimensions are referred to L, the velocity 
components to uo, and the pressure to pu~ (p is the fluid density). 

With respect to the size of the small roughness it is assumed that its characteristic 
thickness a is of the order of magnitude less than or equal to the characteristic thickness 
of the unperturbed boundary layer on a curved plate at this site (a~6--~O(~)), while its 
characteristic extent b is of an order of magnitude greater than or equal to a and less than 
or equal to one (a~b~i). The characteristic width of the roughness c can be greater 
than or equal to a in order of magnitude a(c~a). For a ~ b or a ~ c, only the longitudinal 
or transverse dimension of the perturbed flow domain will be determined by the value of a. 
It is still evident that the size of this domain should be greater than the characteristic 
mean free path of the fluid molecules (a, b, c > e2), i.e., a, b, and c satisfy the relation- 
ships 

g~<a~g ,  a ~ , b ~ , l ,  a~c .  (i.i) 

A general scheme was constructed in [2] for the flow regimes around roughnesses with the 
characteristic dimensions (i.I) on the surface of a flat plate. Cases were examined when 
viscous nonlinear perturbations, u ~ Au ~ Apl/2 or w ~ Aw ~ Ap~/2, were initiated near the 
roughness surface (u, w are the longitudinal and transverse velocity components, Au, Aw are 
the perturbations of these components, and Apl is the pressure perturbation induced by the 
small roughness on the flat plate surface). The pressure perturbation Ap2 ~ • is 
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additionally induced during the flow around roughness on a curved plate because of the action 

of centrifugal forces ( t h e  plate curvature is k = L / R  = ~ K < < , i ,  ~ < . t ,  K . ' - . O ( t ) ,  by is the 
fluid layer thickness in which the pressure perturbation hp2 is induced, and the upper or 
lower sign refers to a convex or concave plate). Flow regimes around roughnesses on curved 
surfaces are investigated below when they induce viscous nonlinear perturbations and are 
identical in order of magnitude to the perturbations Apl and Ap2. Neither inessential nor 
passive terms describing the variation along the curved surface were taken into account in 
the determination of the orders of magnitude of the flow functions in the perturbed domains 
(appropriate estimations are executed in [3]). 

2. It is obtained in [2] that roughnesses, not narrow but with characteristic dimen- 
sions (i.I) for a < < , b ~ c  on a flat plate, induce the pressure perturbation Ap, ~ 0(b2/3). 
If the roughnesses are submerged entirely in a shear, near-wall part of the unperturbed boun- 
dary layer on the plate (u % y), then for a % b % 0 (c ~/2) their flow is described by Navier-- 
Stokes equations and the pressure perturbation Apc~ ku~a.~ O(• Ap,.~ O(e) is induced 
on the curved surface. 

For the compensation flow regime around the roughness a % 0 (eb*/3), E3/2 < b < e3/4 
when there is no interaction with the external inviscid flow in a first approximation, the 
pressure perturbation Ap2"-" kuAub. . , .  0 (• << Ap, ~ O (b~/3) is induced on the curved surface 

for b ~ e or Ap:~ kuAu~ O(• << Ap,~ O(b~/~) for e < b < e 3/~ 

If the roughnesses perturb the external inviscid flow (a % 0(b5/3), a~/4~ b~/6 are 
flows in the regime of free interaction or for a given pressure distribution), then the 
pressure perturbation Ap=~ kUAzlb~ O(• Ap,~ O(b=/3) is induced on the curves surface 

Therefore, for all possible flow regimes of non-narrow (a ~ b ~ c) roughnesses (i.i) Ap2<< 
hp~ for • and, consequently, the influence of the surface curvature will in no way 
be felt for them in a first approximation. 

3. Narrow roughnesses with the characteristic dimensions (i.i) and for a~c < b on 
a flat surface induce the pressure perturbation hpl % O(c2/b ~/3) [2]. If a % O(eb*/~), 
~bL'~c< e/bl/~ The part ABD of the ABC plane in Fig. 2, the lines AB, BC, AC and BD cor- 
respond to c % O(gb~/3), b ~ 0 (i), b % c and c % O(e/b*/3)), then the pressure perturbation 
is produced because of roughness interaction with the near-wall shear part of the unpertur- 
bed boundary layer on the flat surface and there is no interaction with the external invis- 
cid flow. For ~-~ O(cb~/S), e/bVS<c e/b2/~ (the bed plane in Fig. 2, the line BE corre- 
sponds to c % O(e/b=/3)), a pressure perturbation is produced because of roughness interac- 
tion with the external inviscid flow. If the characteristic roughness dimensions are inci- 
dent on the intersection of the planes ABC and BED, the line BD, then the pressure pertur- 
bation is produced because of roughness interaction with the whole boundary layer on the 
flat surface. Perturbation transmission upstream is missing for all flow regimes of narrow 
roughnesses on a flat surface. 

The pressure perturbation Ap ~ Ap~ % Ap2 ~ O(c=/b 4/3) should be induced for narrow 
roughnesses on a curved surface in the near-wall domain 3 with characteristic dimensions 
x % O(b), y % 0(~), z % O(c), a ~ O(eb~/~). Then estimates are obtained for the velocity 
components w % Ap */= ~ O(c/b=/~), u ~ O(b I/~) and v % O(e/b ~/~) from the conservation equa- 
tions of the transverse momentum and the continuity. Consequently, the following indepen- 
dent variables and asymptotic expansions of the flow functions are introduced into domain 3 
of the viscous nonlinear perturbations: 

x - bx~, y = eb~/~y~, 

z = c z ~ ,  ~ = b*/~u~-~ . . . .  ( 3 . 1 )  
v = (e/bXl~)va -1- ..., w = 

' =  (c/b~/~)u,~ q- .. . ,  hp  ~ (c~/b~/~)p~ + ... 

The p r e s s u r e  p e r t u r b a t i o n  Apz.-- ,ku~a.-- .O(xeb) i s  i n d u c e d  on t h e  c u r v e d  s u r f a c e  i n  d o m a i n  3.  
E q u a t i n g  t h e  o r d e r s  o f  t h e  p e r t u r b a t i o n s  Ap~ and  Ap~ i t  i s  e a s y  t o  s e e  t h a t  ~ p ,  ~ hp= f o r  
c.-...O(•176 i s  t h e  l i n e  FG i n  F i g .  2 .  F o r  c ~ a ~ O(eb  ~ / a )  

a . . .  c.-.. 0(~1~/~1~) ,  b . . .  O(~l~/~ ~1~) (3.2) 

is the point F in Fig. 2. Then substitution of the expansions (3.1) into the Navier--Stokes 
equations and completion of the passage to the limit as e ~ O show that in a first 
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Fig. i 

approximation the flow around roughnesses with characteristic dimensions (3.2) on a curved 
surface is described by parabolized Navier--Stokes equations in the longitudinal direction 

Ou 3 Ov 3 Ow.~ Ou 3 Ou~ au~ 02u3 O2u.~ 
Oz s + -- + ~ = 0, u a + w~ .... +--, 

Ov~ Or; 0% * Op s 02v3 a2v3 
u s ~ + v 8-or s + w3 ~ :t= Ku~ + oy~' = Ou---~3 + oz~' ( 3 . 3 )  

Ow.~ Ow s Ow.~ Op~ O"w s OZws 
u . ~  + v ~ - - +  w~ + - -  = - - + - -  

The usual adhesion and non-penetration conditions 

u3 = v~ = w~ = 0 (93 = ] ( x 3 ,  z3))" ( 3 . 4 )  

should be satisfied on the surface of small roughness. The external boundary conditions are 
obtained from a merger with the solution for the near-wall shear part of the unperturbed 
boundary layer on a curved surface 

ua--+Ay3, p3--+-4-KA2y~/3,  v3, w3--+O (x]  + y~ + z ~ - - + ~ ) .  ( 3 . 5 )  

Here A = (3Uao/3y2) for y2 = O (y = ey2, U=o(y2) is the profile of the longitudinal velocity 
component in the unperturbed boundary layer on the curved surface at a point where there is 
a small roughness). 

The line FG (c --~ O(• in Fig. 2 is constructed for • O(|) . For curved sur- 

face with I~ • e the line FG and all subsequent constructions will evidently be shifted 
to the point B. 

4. For thin narrow roughnesses with the characteristic dimensions 

a.-.. O(eb'!3), c , - .  O(• (e. /•  b ~ t (4. i) 

(the line FG in Fig. 2), the flow in domain 3 is described in a first approximation by equa- 
tions of the thin viscous layer type 

Ou 3 Or. I Ow 3 Ou:~ Ou 3 O~t:~ 02u3 

(4.2) 
Ow~ Ow 3 Ow 3 Op~ 02w~ 

O/,, -4- Ku], u~ "k v3 ~ + Oz~ Og'~ - - ' + - -  = 

The  s o l u t i o n  o f  t h e  s y s t e m  ( 4 . 2 )  s h o u l d  s a t i s f y  t h e  i n n e r  ( 3 . 4 )  a n d  i n i t i a l  b o u n d a r y  
conditions 

u~ --+ A~:j, p:~ --~ -4- KA2y~/3,  v:,, w~ ~ 0 (x 3 --+ - -  oo, z 3 --~ ___ oo), 

which are obtained from a merger with the solution for the near-wall shear part of the unper- 
turbed boundary layer on a curved surface. 

To find the external boundary conditions, it is necessary, in addition, to examine the 
domain 2 with thickness y ~ O(c) for e015/• c<~ or y ~ O(e) for e~c<~• -' . Utiliz- 

ing the relationship for Ap2 % kuAuy and the continuity equation and the conservation of the 
transverse momentum equation we have in the first case 
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and in the second 

Fig. 2 

u.. . .  O(c/~), A u . - .  O(~/• v , - ,  O(~c/•  w , - .  O(~/b~m), (4.3) 

~, ~ 3 ,.., O(s215 w..., O(c/b'/D. (4.4) u,-, 0(I), Au.-, O(c-:• v 

These estimates show that in a first approximation the perturbations due to roughnesses with 
characteristic dimensions (4.1) does not penetrate into domain 2 (perturbations of the flow 
functions in domain 2 are less in orders of magnitude than in domain 3). Consequently, the 
solution of the system (4.2) should satisfy the external boundary conditions 

u:, ~ Ay:,, p., --+ 4-  KA2g~/3 ,  vs, w~--+ 0 (y.j.-+ oo), 

i . e . ,  t h e  e x t e r n a l  bounda ry  c o n d i t i o n s  (3 .5 )  a r e  a l s o  v a l i d  f o r  t h e  c a s e  under  c o n s i d e r a t i o n .  

5. Flow regimes around small roughnesses on curved surfaces are examined in Secs. 3 
and 4 when the pressure perturbation Ap2 is induced in a domain 3 with characteristic thick- 
ness equal to the characteristic roughness thickness a in order of magnitude. The external 
domain 2 here remains unperturbed in a first approximation. Evidently the domain 2 was per- 
turbed and the pressure perturbation Ap= was induced there, and an additional displacement 
thickness should be produced in domain 3. But necessary for this is the non-trivial merger 
of asymptotic expansions for the longitudinal velocity component u in domains 2 and 3 [2]. 
Comparing the asymptotic expansions of the flow functions (3.1) for the domain 3 and their 
estimates (4.3) and (4.4) in domain 2, it can be obtained that this condition is satisfied 
for c.-,, O(•  ~ ~ e ~ xl/2~I/2 , the line HG in Fig. 2. Then the roushnesses with the 

characteristic dimensions 

o-~ 0(~t;/3), c... O(x':-~'/2~5/D, (~/x)3/5 <~ b ~< I (5.1) 

the flow in domain 3 is described in a first approximation by the Prandtl spatial boundary 
layer equations without the term ~p/~x in the equation for conservation of the longitudinal 
momentum 

Ou s Or, s Oto 3 Ouq Ou s Ou~ 02u.~ 

--0,3 + + = ~ + + = , (5.2) 

O to ~ O w.. t O p.~ 0 2 w..~ 
~ - 0 ,  u3 ~ -k- v ~ - -  + w3-~  + o~ 3 = OY3 - -  O~ 3 0g~ " 

The solution of the system (5.2) should satisfy the inner (3.4) and initial boundary 
conditions 

us-+  Ags, v3, w3, p3"--~'0 (xa-"~--oo, za--+ 4-oo), (5.3) 

that are obtained from merging with the solution for the near-wall shear part of the unper- 
turbed boundary layer on a curved surface. 
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New independent variables and asymptotic expansions of the flow functions 

x = bx  2, !t = ey i ,  z = cz2, u = u~o(Yi) q-  (c~'/xeb4/3)u2 -}- . . . ,  

v = (c~/xbT/3)v2 q- ..., (5 .4 )  
Y~ 

w "3) w, + . . . .  Ap = 4- S ul0e 2 + + . . .  
0 

a r e  i n t r o d u c e d  when u s i n g  t he  e s t i m a t e s  (4 .4 )  in  domain 2. S u b s t i t u t i o n  o f  the  e x p a n s i o n s  
(5 .4 )  i n t o  the  N a v i e r ~ S t o k e s  e q u a t i o n s  and c o m p l e t i o n  o f  the  p a s s a g e  to  the  l i m i t  as ~ + 0 
show t h a t  i n  a f i r s t  a p p r o x i m a t i o n  the  f low around  the  r o u g h n e s s e s  (5 .1 )  in  domain 2 i s  
d e s c r i b e d  by the  sy s t em o f  l i n e a r  i n v i s c i d  e q u a t i o n s  

8u,~ Ov 2 Ou 2 dulo ulo- . 2 
3p,, Ow., Op 2 

" ~ -4- 2KuooU2, u20"~2 + "~2 = O, 
ag 2 - -  . 

that allows for partial integration 

u., = O d u i J d y , , ,  v., = - -  u~oOO/az2, p i = ~  K D  (t  - -  ui0 ) + pi(y2-+oo) (5 .5 )  

(D = D ( x i ,  z i )  i s  the  d i s p l a c e m e n t  t h i c k n e s s  o f  domain 3) .  Merging t he  a s y m p t o t i c  e x p a n s i o n s  
of  the  f low f u n c t i o n s  (3 .1 )  and (5 .4 )  i n  the  domains 2 and 3 when u s i n g  the  r e l a t i o n s h i p s  
( 5 . 5 )  p e r m i t s  e x t e r n a l  b o u n d a r y  c o n d i t i o n s  to  be o b t a i n e d  f o r  the  s y s t e m  (5 .2 )  

u.~--~ A ( y  3 + D),  w3-~ 0, p~ = ~ K D  + pi(y~, "--~ co) (Y3--~ co).  (5 .6 )  

To determine the function P2 (xa, Y2 -+ 0% za) it is necessary, in addition, to examine 
the perturbed domain I of inviscid external flow with the characteristic dimensions x % O(b), 
y % z % O(c), in which new variables and asymptotic expansions of the flow functions are 
introduced 

x = bx l ,  !! = cy 1, z : CZl, u ~-. I + b2/3ltl -F . . . .  ( 5 . 7 )  

v = (c/bl/3)vl l -  . . . ,  w = (c/bl/3)wl -~- . . . ,  A p  ~-, •  q- (cVb4/3)pa q- .. .  

Merger o f  the  a s y m p t o t i c  e x p a n s i o n s  o f  the  f low f u n c t i o n s  (5 .4 )  and (5 .7 )  in  domains 2 and 1 
shows t h a t  f o r  b > (e/• c , , .  O(• t he  v e r t i c a l  v e l o c i t y  component  v i s  g r e a t e r  in  
o r d e r  o f  magn i tude  i n  domain 1 than  in  domain 2. This  means t h a t  f o r  b > (e!• 3/7 f o r  the  
r o u g h n e s s e s  (5 .1 )  the  domain 1 r emains  u n p e r t u r b e d  and a l l  t he  p e r t u r b a t i o n s  due t o  a s m a l l  
r oughnes s  s h o u l d  damp ou t  in  domain 2, i . e . ,  p i ( x i ,  y2 -r r z i )  = 0.  

I f  

a . ~  O(es/: /uVT),  b,'-, O(eS/Thdl7), c,. . ,  0(• (5 .8 )  

( t h e  p o i n t  H in  F ig .  2 ) ,  then  s u b s t i t u t i o n  o f  the  e x p a n s i o n s  (5 .7 )  i n t o  the  S a v i e r - - S t o k e s  
e q u a t i o n s  and c o m p l e t i o n  o f  the  p a s s a g e  to  the  l i m i t  as e § 0 show t h a t  i n  a f i r s t  a p p r o x i -  
ma t ion  the flow in domain 1 is described by a system of linear inviscid equations that it is 
convenient to reduce to one equation for the pressure perturbation 

O'pv"Oy~ -t- O'p,,'Oz~ = O, p,--+O (x~ + y~ + z~--+ co), (5 .9)  
p~(x.  O, z,) = p . ( z , ,  q~--, co,  z.)  

The i n n e r  b o u n d a r y  c o n d i t i o n  f o r  t h i s  e q u a t i o n  i s  o b t a i n e d  from merger  of  the  expan-  
s i o n s  (5 .4 )  and (5 .7 )  when u s i n g  the  r e l a t i o n s h i p s  (5 .5 )  

Op,l@, = a'Dlaz~ (tA = 0). (5.10) 

For b <  (e/• s/~, c ~  O(~t~/2e~/'Zb~/~) i n f i n i t e l y  l a rge  p e r t u r b a t i o n s  of  the v e r t i c a l  v e l o c i t y  com- 
ponent  v are induced in domain i, which is inadmissible. 

The flow regimes around roughnesses examined in this section were investigated in [3, 
4]; the results of numerical computations of the boundary value problem (3.4), (5.2), (5.3), 
and (5.6) are represented in [4] for p=(x=, y= + ~, z=) = 0 in a linear approximation. 
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6. The characteristic thickness of "thick" roughnesses (in the terminology of [2]) 
a ~ O(cb 2/~) (the BED plane in Fig. 2) is greater in order of magnitude than the thickness 
of the viscous layer 61 ~ O(eb z/3) near their surface. Consequently, the asymptotic expan- 
sions (3.1) are valid in domain 3 except that the coordinate ya is now measured from the 
roughness surface f(x3, z3). The vertical velocity component v in domain 2 should equal 
the characteristic slope of the roughness in the longitudinal direction v ~ a/b ~ O(c/b ~/3) 
in order of magnitude. Using the asymptotic expansions (5.4) it is easy 'to obtain that this 
condition is satisfied for c-~ O(• 2) (the line HI in the plane BED in Fig. 2). Then the 
flow around roughnesses with characteristic dimensions 

a, - ,  O(cb2/a), c,- ,  O(xb2), (el• a/7 < b < (e!x) a/s ( 6 . 1 )  

is described in a first approximation as E + 0 by the system (5.2) whose solution should 
satisfy the initial boundary (5.3)and the inner boundary conditions 

u 3 = ~ = wa = 0 (y~ = 0).  ( 6 . 2 )  

New independent variables are introduced in domain 2 

x = bx2, y = ey 2 + cb2(3/(x2, z2) -~ . . . .  z = cz2. (6,3) 

Application of the variables (6.3) and the asymptotic expansions of the flow functions 
(5.4) shows that in a first approximation as e § 0 in domain 2 equations of the following 
form are valid 

Ou 2 

Ox 2 

Opu 6to~ Op. a 
-- 4- 2Ku.,ou~, u.,., ~2"5-J-" + ~ = O, oy., 

=0, 

which allow the partial integration 

d . , ,  ( & #D ] U" 
- + (6.4) 

Merger of the asymptotic expansion of the flow functions (3.1) and (5.4) (with the inde- 
pendent variables (6.3)) in domains 3 and 2 when using the relationships (6.4) show that 
D(x2, z2) = --f(x2, z2) in the case under consideration and the solution of the system (5.2) 
satisfies the external boundary conditions 

u a ~  A y  3, w3--~ O, Pa = 4-[.(] + p~(y~--~ ~ )  (Ya"* oo). ( 6 . 5 )  

The unknown function p2(x2, y2 ~ =, z2) is determined from the solution (5.9) for 
domain 1 and the internal boundary condition 

Op, i@,  = - -  202I/0x~ (y~ = 0). (6.6) 

7. The analysis performed for the flow regimes around narrow roughnesses on a curved 
surface shows the essential distinctions in the mechanism of perturbation origin as compared 
with the flow around roughnesses on a flat surface (see Sec. 3 and [2]). Thus, the roughnes- 
ses (3.2) and (4.1) that induce the greatest viscous layer in thickness near their surfaces 
(in domain 3) do not perturb the external domains 2 and 1 (the line FG in Fig. 2) in a first 
approximation. The perturbations due to roughnesses are here equilibrated in the domain 3 
by a strong centrifugal force field Ap2 ~ y3, the flows are described by Navier--Stokes equa- 
tions parabolized in the longitudinal direction or by equations of the thin viscous layer 
type.(boundary value problems (3.3)-(3.5) or (3.4), (3.5), and (4.2), respectively). 

For the roughnesses (5.1) (the line HG in Fig. 2), the centrifugal forces do not 
already equilibrate the perturbations due to roughnesses in the thinner layer 3. This 
occurs on the fundamental boundary layer thickness on the curved surface in domain 2 and the 
flows are described by the Prandtl spatial bQundary layer equations with a "centrifugal" 
interaction condition between domains 3 and 2 (the boundary value problem (3.4), (5.2), (5.3), 
and (5.6) for p=(x2, Y2 + ~, z=) = 0). For the roughnesses (5.8) (the point H in Fig. 2), 
the perturbations do not damp out in domain 2 and penetrate into domain i (here it is neces- 
sary to solve the boundary value problem (5.9) and (5.10) in addition in order to determine 
the function p=(x=, y2 + =, za). 
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The thinnest of all the viscous layers examined above is induced on their surfaces for 
the flow around the roughnesses (6.1) ("thick" in the terminology of [2]). Hence, domains 
2 and 1 are perturbed only by the shape of the roughness, and in this case the Prandtl 
spatial boundary layer equations with a given pressure distribution must be solved (the boun- 
dary value problem (5.2), (5.3), (5.9), (6.2), (6.5), and (6.6), the line HI in Fig. 2). 

It is obtained in [2] that because of the diminution of the transverse velocity compo- 
nent w in order of magnitude during passage from the flow around non-narrow roughnesses 
(c ~ b) on a flat plate to narrow (c < b) the perturbation transmission upstream disappears 
for them. If the roughness is on a curved surface, then Apl and Ap2 have identical signs 
for a concave surface and different signs for a convex. Consequently, for narrow roughnes- 
ses on a concave surface the total pressure perturbation is greater than for roughnesses on 
a flat surface. This results in an increase in the transverse velocity component w and the 
origination of upstream perturbation transmission [3, 4]. For roughnesses on convex sur- 
faces such a phenomenon should not be realized. 
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STEADY SURFACING OF A SINGLE BUBBLE 

IN AN INFINITE VOLUME OF LIQUID 

P. K. Volkov and E. A. Chinnov UDC 532.529.6 

The motion of individual gas bubbles has long been an object of investigation. Impor- 
tant theoretical solutions have been obtained and a sizable body of experimental data has 
been accumulated. Recent years have seen the broad use of numerical methods to solve the 
Navier--Stokes equations with an unknown boundary in regard to the study of bubble motion 
[i, 2]. 

Here, we use numerical solutions that we obtained to the complete Navier--Stokes equa- 
tions and the results of an experiment to analyze the simultaneous effect of the viscosity 
of the liquid and surface tension on the rate of surfacing and form of individual bubbles. 
We also determine the limits of disturbance of the sphericity of gas bubbles and the forma- 
tion of eddies in the rear part of the bubbles. 

We examine the steady surfacing of an axisymmetric bubble with the boundary F. The 
volume of the bubble is constant, as is the pressure inside it. We introduce cartesian 
coordinate system xl, x2, x3, connected with the center of the bubble. The x3 axis is 
directed along the upward velocity of the gas cavity, u, n is the unit vector of an outward 
normal to r, r is the unit vector of a tangent to F. The motion of the viscous liquid out- 
side the closed surface F is described by the system of equations 

(vv)  v + VP/P = vAv,  VV = O, (1)  

where p is the modified pressure function: p = q + pgx3 -- Po; q is the pressure in the 
liquid; po is the pressure at the level x3 = 0; g is acceleration due to gravity; 0 is the 
density of the liquid; v is the kinematic viscosity of the liquid. 

The following conditions are satisfied on the free boundary F: impermeability 
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